Tài liệu gồm 72 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề đạo hàm trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống.
Chương 9. ĐẠO HÀM 234.
Bài 1. ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM 234.
A TRỌNG TÂM KIẾN THỨC 234.
B MỘT SỐ DẠNG TOÁN THƯỜNG GẶP 236.
+ Dạng 1. Tính đạo hàm bằng định nghĩa 236.
+ Dạng 2. Hệ số góc và phương trình tiếp tuyến của đồ thị hàm số 237.
C BÀI TẬP RÈN LUYỆN 238.
D BÀI TẬP TRẮC NGHIỆM 242.
Bài 2. CÁC QUY TẮC TÍNH ĐẠO HÀM 253.
A KIẾN THỨC TRỌNG TÂM 253.
B CÁC DẠNG TOÁN THƯỜNG GẶP 257.
+ Dạng 1. Đạo hàm một số hàm thường gặp 257.
+ Dạng 2. Đạo hàm của hàm số lượng giác 259.
+ Dạng 3. Đạo hàm của hàm số mũ và hàm số lôgarit 259.
+ Dạng 4. Đạo hàm của tổng, hiệu, tích, thương của hai hàm số 260.
+ Dạng 5. Đạo hàm của hàm hợp 261.
C BÀI TẬP RÈN LUYỆN 263.
D BÀI TẬP TRẮC NGHIỆM 266.
Bài 3. ĐẠO HÀM CẤP HAI 274.
A KIẾN THỨC TRỌNG TÂM 274.
B CÁC DẠNG TOÁN THƯỜNG GẶP 275.
+ Dạng 1. Đạo hàm cấp hai 275.
+ Dạng 2. Toán thực tế 276.
C BÀI TẬP RÈN LUYỆN 277.
D BÀI TẬP TRẮC NGHIỆM 280.
Bài 4. ÔN TẬP CHƯƠNG IX 291.
A BÀI TẬP TRẮC NGHIỆM 291.
B BÀI TẬP TỰ LUẬN 295.
Hình Ảnh Chi Tiết
File bài giảng đạo hàm toán 11 kết nối tri thức với cuộc sống PDF Chi Tiết
bài giảng đạo hàm toán 11 kết nối tri thức với cuộc sống chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.
Nội Dung Đề Thi: bài giảng đạo hàm toán 11 kết nối tri thức với cuộc sống sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.
Các Bài Toán Cơ Bản:
Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.
Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.
Các Câu Hỏi Mở:
Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.
Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:
Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.
Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.
Khả Năng Giải Quyết Vấn Đề:
Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.
Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.
Kết Luận:
bài giảng đạo hàm toán 11 kết nối tri thức với cuộc sống chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.