1. Môn Toán
  2. chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số
chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số
Thể Loại: TIPS Giải Toán 11
Ngày đăng: 03/08/2018

chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số

Bài viết hướng dẫn phương pháp chứng minh phương trình có nghiệm bằng cách sử dụng tính liên tục của hàm số. Kiến thức và các ví dụ minh học có trong bài viết được tham khảo từ các tài liệu chuyên đề giới hạn đăng tải trên MonToan.com.vn.

Phương pháp:

Để chứng minh phương trình có nghiệm bằng cách sử dụng tính liên tục của hàm số, ta thực hiện theo các bước sau:

Bước 1: Biến đổi phương trình về dạng \(f\left( x \right) = 0.\)

Bước 2: Tìm hai số \(a\) và \(b\) \((a<b)\) sao cho \(f\left( a \right).f\left( b \right) < 0.\)

Bước 3: Chứng minh hàm số \(f(x)\) liên tục trên đoạn \(\left[ {a;b} \right].\)

Từ đó suy ra phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {a;b} \right).\)

Chú ý:

+ Nếu  \(f\left( a \right).f\left( b \right) \le 0\) thì phương trình có ít nhất một nghiệm thuộc \(\left[ {a;b} \right].\)

+ Nếu hàm số \(f(x)\) liên tục trên \(\left[ {a; + \infty } \right)\) và có \(f\left( a \right).\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {a; + \infty } \right).\)

+ Nếu hàm số \(f(x)\) liên tục trên \(\left( { – \infty ;a} \right]\) và có \(f\left( a \right).\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { – \infty ;a} \right).\)

Ví dụ 1: Chứng minh rằng phương trình \(4{x^3} – 8{x^2} + 1 = 0\) có nghiệm trong khoảng \(\left( { – 1;2} \right).\)

Hàm số \(f\left( x \right) = 4{x^3} – 8{x^2} + 1\) liên tục trên \(R.\)

Ta có: \(f\left( { – 1} \right) = – 11\), \(f\left( 2 \right) = 1\) nên \(f\left( { – 1} \right).f\left( 2 \right) < 0.\)

Do đó theo tính chất hàm số liên tục, phương trình đã cho có ít nhất một nghiệm thuộc khoảng \(\left( { – 1;2} \right).\)

Ví dụ 2: Chứng minh phương trình \(4{x^4} + 2{x^2} – x – 3 = 0\) có ít nhất \(2\) nghiệm thuộc khoảng \(\left( { – 1;1} \right).\)

Đặt \(f\left( x \right) = 4{x^4} + 2{x^2} – x – 3\) thì \(f\left( x \right)\) liên tục trên \(R.\)

Ta có:

\(f\left( { – 1} \right) = 4 + 2 + 1 – 3 = 4.\)

\(f\left( 0 \right) = – 3.\)

\(f\left( 1 \right) = 2.\)

Vì \(f\left( { – 1} \right).f\left( 0 \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( { – 1;0} \right).\)

Vì \(f\left( 1 \right).f\left( 0 \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( {0;1} \right).\)

Mà hai khoảng \(\left( { – 1;0} \right)\), \(\left( {0;1} \right)\) không giao nhau. Từ đó suy ra phương trình đã cho có ít nhất \(2\) nghiệm thuộc khoảng \(\left( { – 1;1} \right).\)

Ví dụ 3: Chứng minh phương trình \({x^5} – 5{x^3} + 4x – 1 = 0\) có đúng năm nghiệm.

Đặt \(f\left( x \right) = {x^5} – 5{x^3} + 4x – 1\) thì \(f\left( x \right)\) liên tục trên \(R.\)

Ta có \(f\left( x \right) = x\left( {{x^4} – 5{x^2} + 4} \right) – 1\) \( = \left( {x – 2} \right)\left( {x – 1} \right)x\left( {x + 1} \right)\left( {x + 2} \right) – 1.\)

\(f\left( { – 2} \right) = – 1.\)

\(f\left( { – \frac{3}{2}} \right) = \frac{{105}}{{32}} – 1 /> 0.\)

\(f\left( { – 1} \right) = – 1 < 0.\)

\(f\left( {\frac{1}{2}} \right) = \frac{{45}}{{32}} – 1 /> 0.\)

\(f\left( 1 \right) = – 1 < 0.\)

\(f\left( 3 \right) = 120 – 1 = 119 /> 0.\)

Vì \(f\left( { – 2} \right).f\left( { – \frac{3}{2}} \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( { – 2; – \frac{3}{2}} \right).\)

Vì \(f\left( { – \frac{3}{2}} \right).f\left( { – 1} \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( { – \frac{3}{2}; – 1} \right).\)

Vì \(f\left( { – 1} \right).f\left( {\frac{1}{2}} \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( { – 1;\frac{1}{2}} \right).\)

Vì \(f\left( {\frac{1}{2}} \right).f\left( 1 \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( {\frac{1}{2};1} \right).\)

Vì \(f\left( 1 \right).f\left( 3 \right) < 0\) nên phương trình có nghiệm thuộc khoảng \(\left( {1;3} \right).\)

Do các khoảng \(\left( { – 2; – \frac{3}{2}} \right)\), \(\left( { – \frac{3}{2}; – 1} \right)\), \(\left( { – 1;\frac{1}{2}} \right)\), \(\left( {\frac{1}{2};1} \right)\), \(\left( {1;3} \right)\) không giao nhau nên phương trình có ít nhất \(5\) nghiệm.

Mà phương trình bậc \(5\) có không quá \(5\) nghiệm suy ra phương trình đã cho có đúng \(5\) nghiệm.

[ads]

Ví dụ 4: Chứng minh rằng nếu \(2a + 3b + 6c = 0\) thì phương trình \(a{\tan ^2}x + b\tan x + c = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)\), \(k \in Z.\)

Đặt \(t = \tan x\), vì \(x \in \left( {k\pi ;\frac{\pi }{4} + k\pi } \right)\) nên \(t \in \left( {0;1} \right)\), phương trình đã cho trở thành: \(a{t^2} + bt + c = 0\) \(\left( * \right)\) với \(t \in \left( {0;1} \right).\)

Đặt \(f\left( t \right) = a{t^2} + bt + c\) thì \(f\left( t \right)\) liên tục trên \(R.\)

Ta sẽ chứng minh phương trình \(\left( * \right)\) luôn có nghiệm \(t \in \left( {0;1} \right).\)

• Cách 1:

Ta có: \(f\left( 0 \right).f\left( {\frac{2}{3}} \right)\) \( = \frac{c}{9}\left( {4a + 6b + 9c} \right)\) \( = \frac{c}{9}\left[ {2\left( {2a + 3b + 6c} \right) – 3c} \right]\) \( = – \frac{{{c^2}}}{3}.\)

+ Nếu \(c = 0\) thì \(f\left( {\frac{2}{3}} \right) = 0\) do đó phương trình \(\left( * \right)\) có nghiệm \(t = \frac{2}{3} \in \left( {0;1} \right).\)

+ Nếu \(c \ne 0\) thì \(f\left( 0 \right).f\left( {\frac{2}{3}} \right) < 0\) suy ra phương trình \(\left( * \right)\) có nghiệm \(t \in \left( {0;\frac{2}{3}\pi } \right)\), do đó phương trình \(\left( * \right)\) có nghiệm \(t \in \left( {0;1} \right).\)

Vậy phương trình \(a{\tan ^2}x + b\tan x + c = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)\), \(k \in Z.\)

• Cách 2:

Ta có: \(f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)\) \( = c + 4\left( {\frac{1}{4}a + \frac{1}{2}b + c} \right)\) \( + a + b + c\) \( = 2a + 3b + 6c = 0\) \(\left( { * * } \right).\)

+ Nếu \(a = 0\), từ giả thiết suy ra \(3b + 6c = 0\), do đó phương trình \(\left( * \right)\) có nghiệm \(t = \frac{1}{2} \in \left( {0;1} \right).\)

+ Nếu \(a \ne 0\) thì \(f\left( 0 \right)\), \(f\left( {\frac{1}{2}} \right)\), \(f\left( 1 \right)\) không thể đồng thời bằng \(0\) (vì phương trình bậc hai không có quá hai nghiệm).

Khi đó, từ \(\left( { * * } \right)\) suy ra trong ba số \(f\left( 0 \right)\), \(f\left( {\frac{1}{2}} \right)\), \(f\left( 1 \right)\) phải có hai giá trị trái dấu nhau (Vì nếu cả ba giá trị đó cùng âm hoặc cùng dương thì tổng của chúng không thể bằng \(0\)).

Mà hai giá trị nào trong chúng trái dấu thì theo tính chất hàm liên tục ta đều suy ra phương trình \(\left( * \right)\) có ít nhất một nghiệm \(t \in \left( {0;1} \right).\)

Vậy phương trình \(a{\tan ^2}x + b\tan x + c = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)\), \(k \in Z.\)

Ví dụ 5: Cho hàm số \(y = f(x) = {x^3} – \frac{3}{2}{m^2}{x^2} + 32\) (với \(m\) là tham số). Chứng minh rằng với \(m < – 2\) hoặc \(m /> 2\) thì phương trình \(f(x)=0\) có đúng ba nghiệm phân biệt \({x_1}\), \({x_2}\), \({x_3}\) và thỏa điều kiện \({x_1} < 0 < {x_2} < {x_3}.\)

Ta có: \(f(0) = 32\), \(f\left( {{m^2}} \right) = \frac{1}{2}\left( {64 – {m^6}} \right)\), khi \(m < – 2\) hoặc \(m /> 2\) thì \(\frac{1}{2}\left( {64 – {m^6}} \right) < 0\) và \({m^2} /> 0.\)

Mà:

\(\mathop {\lim }\limits_{x \to – \infty } f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to – \infty } \left( {{x^3} – \frac{3}{2}{m^2}{x^2} + 32} \right) = – \infty \) \( \Rightarrow \exists \alpha < 0\) sao cho \(f\left( \alpha \right) < 0.\)

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\) \( = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} – \frac{3}{2}{m^2}{x^2} + 32} \right) = + \infty \) \( \Rightarrow \exists \beta /> {m^2}\) sao cho \(f\left( \beta \right) /> 0.\)

Do đó ta có \(\left\{ \begin{array}{l}

f\left( \alpha \right).f\left( 0 \right) < 0\\

f\left( 0 \right).f\left( {{m^2}} \right) < 0\\

f\left( {{m^2}} \right).f\left( \beta \right) < 0

\end{array} \right. .\) Vì hàm số \(f(x)\) xác định và liên tục trên \(R\) nên liên tục trên các đoạn \(\left[ {\alpha ;0} \right]\), \(\left[ {0;{m^2}} \right]\), \(\left[ {{m^2};\beta } \right]\) nên phương trình \(f(x)=0\) có ít nhất ba nghiệm lần lượt thuộc các khoảng \(\left( {\alpha ;0} \right)\), \(\left( {0;{m^2}} \right)\), \(\left( {{m^2};\beta } \right).\) Vì \(f(x)\) là hàm bậc ba nên nhiều nhất chỉ có ba nghiệm.

Vậy với \(m < – 2\) hoặc \(m /> 2\) thì phương trình \(f(x)={x^3} – \frac{3}{2}{m^2}{x^2} + 32=0\) có đúng ba nghiệm phân biệt \({x_1}\), \({x_2}\), \({x_3}\) thỏa mãn điều kiện \({x_1} < 0 < {x_2} < {x_3}.\)

Ví dụ 6: Chứng minh rằng phương trình \(\left( {{m^2} – m + 3} \right){x^{2n}} – 2x – 4 = 0\) với \(n \in {N^*}\) luôn có ít nhất một nghiệm âm với mọi giá trị của tham số m.

Đặt \(f\left( x \right) = \left( {{m^2} – m + 3} \right){x^{2n}} – 2x – 4.\)

Ta có:

\(f\left( { – 2} \right)\) \( = \left( {{m^2} – m + 3} \right){\left( { – 2} \right)^{2n}} – 2\left( { – 2} \right) – 4\) \( = \left( {{m^2} – m + 3} \right){2^{2n}} /> 0\), \(\forall m \in R.\)

\(f\left( 0 \right) = – 4 < 0\), \(\forall m \in R.\)

Từ đó có: \(f\left( { – 2} \right).f\left( 0 \right) < 0\), \(\forall m \in R.\)

Ngoài ra hàm số \(f(x)\) xác định và liên tục trên \(R\) nên hàm số liên tục trên đoạn \(\left[ { – 2;0} \right].\)

Vậy phương trình \(f(x) = 0\) luôn có ít nhất một nghiệm âm với mọi giá trị tham số \(m.\)

Hình Ảnh Chi Tiết

chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.

Nội Dung Đề Thi: chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.

Các Bài Toán Cơ Bản:

Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.

Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.

Các Câu Hỏi Mở:

Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.

Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:

Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.

Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.

Khả Năng Giải Quyết Vấn Đề:

Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.

Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.

Kết Luận:

chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%