1. Môn Toán
  2. các quy tắc tính đạo hàm
các quy tắc tính đạo hàm
Thể Loại: TIPS Giải Toán 11
Ngày đăng: 09/08/2018

các quy tắc tính đạo hàm

Bài viết trình bày các quy tắc tính đạo hàm, giúp việc tính đạo hàm của một hàm số phức tạp trở nên dễ dàng hơn bằng cách quy về tính đạo hàm của các hàm số đơn giản.

I. Kiến thức cần nắm:

1. Quy tắc tính đạo hàm:

a. Đạo hàm của tổng, hiệu, tích, thương các hàm số:

• \(({u_1} \pm {u_2} \pm … \pm {u_n})’\) \( = {u_1}’ \pm {u_2}’ \pm … \pm {u_n}’.\)

• \((k.u(x))’ = k.u'(x).\)

• \((uv)’ = u’v + uv’.\)

• \((uvw)’ = u’vw + uv’w + uvw’.\)

• \(({u^n}(x))’ = n{u^{n – 1}}(x).u'(x).\)

• \(\left( {\frac{c}{{u(x)}}} \right)’ = – \frac{{c.u'(x)}}{{{u^2}(x)}}.\)

• \({\left( {\frac{{u(x)}}{{v(x)}}} \right)}’\) \( = \frac{{u'(x)v(x) – v'(x)u(x)}}{{{v^2}(x)}}.\)

b. Đạo hàm của hàm số hợp: Cho hàm số \(y = f(u(x)) = f(u)\) với \(u = u(x).\) Khi đó: \(y{‘_x} = y{‘_u}.u{‘_x}.\)

2. Bảng công thức đạo hàm các hàm sơ cấp cơ bản:

Đạo hàmHàm hợp
\[(c)’ = 0\]
\[(x)’ = 1\]
\[({x^\alpha })’ = \alpha {x^{\alpha – 1}}\]\[\left( {{u^\alpha }} \right)’ = \alpha {u^{\alpha – 1}}.u’\]
\[\left( {\sqrt x } \right)’ = \frac{1}{{2\sqrt x }}\]\[\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}\]
\[\left( {\sqrt[n]{x}} \right)’ = \frac{1}{{n\sqrt[n]{{{x^{n – 1}}}}}}\]\[\left( {\sqrt[n]{u}} \right)’ = \frac{{u’}}{{n\sqrt[n]{{{u^{n – 1}}}}}}\]
\[(\sin x)’ = \cos x\]\[(\sin u)’ = u’.\cos u\]
\[(\cos x)’ = – \sin x\]\[(\cos u)’ = – u’\sin u\]
\[(\tan x)’ = \frac{1}{{{{\cos }^2}x}}\]\[\left( {\tan u} \right)’ = \frac{{u’}}{{{{\cos }^2}u}}\]
\[(\cot x)’ = – \frac{1}{{{{\sin }^2}x}}\]\[\left( {\cot u} \right)’ = – \frac{{u’}}{{{{\sin }^2}u}}\]

II. Ví dụ minh họa:

Ví dụ 1. Tính đạo hàm các hàm số sau:

a. \(y = {x^3} – 3{x^2} + 2x + 1.\)

b. \(y = – {x^3} + 3x + 1.\)

c. \(y = \frac{{{x^4}}}{4} – {x^2} + 1.\)

d. \(y = – 2{x^4} + \frac{3}{2}{x^2} + 1.\)

e. \(y = \frac{{2x + 1}}{{x – 3}}.\)

f. \(y = \frac{{{x^2} – 2x + 2}}{{x + 1}}.\)

a. \(y’ = {\left( {{x^3} – 3{x^2} + 2x + 1} \right)’}\) \( = 3{x^2} – 6x + 2.\)

b. \(y’ = {\left( { – {x^3} + 3x + 1} \right)’}\) \( = – 3{x^2} + 3.\)

c. \(y’ = {\left( {\frac{{{x^4}}}{4} – {x^2} + 1} \right)’}\) \( = {x^3} – 2x.\)

d. \(y’ = {\left( { – 2{x^4} + \frac{3}{2}{x^2} + 1} \right)’}\) \( = – 8{x^3} + 3x.\)

e. \(y’ = \) \(\frac{{(2x + 1)'(x – 3) – (x – 3)'(2x + 1)}}{{{{(x – 3)}^2}}}\) \( = \frac{{ – 7}}{{{{(x – 3)}^2}}}.\)

f. \(y’ = \) \(\frac{{({x^2} – 2x + 2)'(x + 1) – ({x^2} – 2x + 2)(x + 1)’}}{{{{(x + 1)}^2}}}\) \( = \frac{{(2x – 2)(x + 1) – ({x^2} – 2x + 2)}}{{{{(x + 1)}^2}}}\) \( = \frac{{{x^2} + 2x – 4}}{{{{\left( {x + 1} \right)}^2}}}.\)

Ví dụ 2. Tính đạo hàm các hàm số sau:

a. \(y = {\left( {{x^7} + x} \right)^2}.\)

b. \(y = \left( {{x^2} + 1} \right)\left( {5 – 3{x^2}} \right).\)

c. \(y = {x^2}\left( {2x + 1} \right)\left( {5x – 3} \right).\)

d. \(y = {\left( {4x + \frac{5}{{{x^2}}}} \right)^3}.\)

e. \(y = {(x + 2)^3}{(x + 3)^2}.\)

a. \(y’ = 2({x^7} + x)({x^7} + x)’\) \( = 2({x^7} + x)(7{x^6} + 1).\)

b. Ta có: \(y = \left( {{x^2} + 1} \right)\left( {5 – 3{x^2}} \right)\) \( = – 3{x^4} + 2{x^2} + 5\) \( \Rightarrow y’ = – 12{x^3} + 4x.\)

c. Ta có: \(y = {x^2}\left( {2x + 1} \right)\left( {5x – 3} \right)\) \( = 10{x^4} – {x^3} – 3{x^2}\) \( \Rightarrow y’ = 40{x^3} – 3{x^2} – 6x.\)

d. \(y’ = 3{\left( {4x + \frac{5}{{{x^2}}}} \right)^2}\left( {4x + \frac{5}{{{x^2}}}} \right)’\) \( = 3{\left( {4x + \frac{5}{{{x^2}}}} \right)^2}\left( {4 – \frac{{10}}{{{x^3}}}} \right).\)

e. \(y’ = 3{({x^2} + 5x + 6)^2} + 2(x + 3){(x + 2)^3}.\)

Ví dụ 3. Giải bất phương trình \(f'(x) \ge 0\), biết:

a. \(f(x) = x\sqrt {4 – {x^2}} .\)

b. \(f(x) = x – 2\sqrt {{x^2} + 12} .\)

c. \(f(x) = \sqrt[4]{{{x^2} + 1}} – \sqrt x .\)

a. Tập xác định: \(D = \left[ { – 2;2} \right].\)

Ta có: \(f'(x) = \sqrt {4 – {x^2}} – \frac{{{x^2}}}{{\sqrt {4 – {x^2}} }}\) \( = \frac{{4 – 2{x^2}}}{{\sqrt {4 – {x^2}} }}.\)

Do đó: \(f'(x) \ge 0\) \( \Leftrightarrow 4 – 2{x^2} \ge 0\) \( \Leftrightarrow – \sqrt 2 \le x \le \sqrt 2 .\)

b. Tập xác định: \(D = R.\)

Ta có: \(f'(x) = 1 – \frac{{2x}}{{\sqrt {{x^2} + 12} }}\) \( = \frac{{\sqrt {{x^2} + 12} – 2x}}{{\sqrt {{x^2} + 12} }}.\)

Suy ra: \(f'(x) \ge 0\) \( \Leftrightarrow \sqrt {{x^2} + 12} \ge 2x\) \((1).\)

• Với \(x < 0\) thì \((1)\) luôn đúng.

• Với \(x \ge 0\) thì \((1) \Leftrightarrow \left\{ \begin{array}{l}

x \ge 0\\

{x^2} + 12 \ge 4{x^2}

\end{array} \right.\) \( \Leftrightarrow 0 \le x \le 2.\)

Vậy bất phương trình \(f'(x) \ge 0\) có nghiệm khi và chỉ khi \(x \le 2.\)

c. Tập xác định: \(D = \left[ {0; + \infty } \right).\)

Ta có: \(f'(x) = \frac{x}{{2\sqrt[4]{{{{({x^2} + 1)}^3}}}}} – \frac{1}{{2\sqrt x }}.\)

\(f'(x) \ge 0\) \( \Leftrightarrow x\sqrt x \ge \sqrt[4]{{{{({x^2} + 1)}^3}}}\) \( \Leftrightarrow {x^6} \ge {({x^2} + 1)^3}\) \( \Leftrightarrow {x^2} \ge {x^2} + 1\), bất phương trình này vô nghiệm.

[ads]

Ví dụ 4. Tính đạo hàm các hàm số sau:

a. \(y = \sqrt {2{x^2} + 3x + 1} .\)

b. \(y = \sqrt[5]{{\sqrt {2{x^2} + 1} + 3x + 2}}.\)

c. \(y = \sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } .\)

d. \(y = \tan ({\sin ^2}3x) + \sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} .\)

e. \(y = \sqrt[3]{{\sin (\tan x) + \cos (\cot x)}}.\)

a. \(y’ = \frac{{(2{x^2} + 3x + 1)’}}{{2\sqrt {2{x^2} + 3x + 1} }}\) \( = \frac{{4x + 3}}{{2\sqrt {2{x^2} + 3x + 1} }}.\)

b. \(y’ = \frac{1}{{5.\sqrt[5]{{{{(\sqrt {2{x^2} + 1} + 3x + 2)}^4}}}}}\)\((\sqrt {2{x^2} + 1} + 3x + 2)’\) \( = \frac{1}{{5.\sqrt[5]{{{{(\sqrt {2{x^2} + 1} + 3x + 2)}^4}}}}}\)\((\frac{{2x}}{{\sqrt {2{x^2} + 1} }} + 3).\)

c. \(y’ = \frac{{(2{{\sin }^2}(2x – 1) + \cos \sqrt x )’}}{{2\sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } }}\) \( = \frac{{2\sin (4x – 2) – \frac{1}{{2\sqrt x }}\sin \sqrt x }}{{2\sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } }}\) \( = \frac{{4\sqrt x \sin (4x – 2) – \sin \sqrt x }}{{4\sqrt {2x{{\sin }^2}(2x – 1) + x\cos \sqrt x } }}.\)

d. \(y’ = [1 + {\tan ^2}({\sin ^2}3x)]({\sin ^2}3x)’\) \( + \frac{{[{{\cot }^2}(1 – 2{x^3}) + 3]’}}{{2\sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} }}\) \( = 3 [1 + {\tan ^2}({\sin ^2}3x)]\sin 6x\) \( + \frac{{6{x^2}{\rm{[}}1 + {{\cot }^2}(1 – 2{x^3}){\rm{]}}\cot (1 – 2{x^3})}}{{\sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} }}.\)

e. \(y’ = \frac{{[\sin (\tan x) + \cos (\cot x)]’}}{{3\sqrt {{{[\sin (\tan x) + \cos (\cot x)]}^2}} }}\) \( = \frac{{(1 + {{\tan }^2}x)\cos (\tan x) + (1 + {{\cot }^2}x)\sin (\cot x)}}{{3\sqrt {{{[\sin (\tan x) + \cos (\cot x)]}^2}} }}.\)

Ví dụ 5. Tính đạo hàm các hàm số sau:

a. \(f(x) = \left\{ \begin{array}{l}

{x^2} – 3x + 1\:khi\:x /> 1\\

2x + 2\:khi\:x \le 1{\rm{ }}

\end{array} \right.\)

b. \(f(x) = \left\{ \begin{array}{l}

{x^2}\cos \frac{1}{{2x}}\:khi\:x \ne 0\\

0\:khi\:x = 0

\end{array} \right.\)

a.

• Với \(x /> 1\) \( \Rightarrow f(x) = {x^2} – 3x + 1\) \( \Rightarrow f'(x) = 2x – 3.\)

• Với \(x < 1\) \( \Rightarrow f(x) = 2x + 2\) \( \Rightarrow f'(x) = 2.\)

• Với \(x = 1\), ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f(x)\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} – 3x + 1} \right)\) \( = – 1 \ne f(1)\) \( \Rightarrow \) hàm số không liên tục tại \(x = 1\), suy ra hàm số không có đạo hàm tại \(x = 1.\)

Vậy \(f'(x) = \left\{ \begin{array}{l}

2x – 3\:khi\:x /> 1\\

2\:khi\:x < 1

\end{array} \right.\)

b.

• Với \(x \ne 0\) \( \Rightarrow f(x) = {x^2}\cos \frac{1}{{2x}}\) \( \Rightarrow f'(x) = 2x\cos \frac{1}{{2x}} – \frac{1}{2}\cos \frac{1}{{2x}}.\)

• Với \(x = 0\), ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{f(x) – f(0)}}{x}\) \( = \mathop {\lim }\limits_{x \to 0} x\cos \frac{1}{{2x}} = 0\) \( \Rightarrow f'(0) = 0.\)

Vậy \(f'(x) = \left\{ \begin{array}{l}

\left( {2x – \frac{1}{2}} \right)\cos \frac{1}{{2x}}\:khi\:x \ne 0\\

0\:khi\:x = 0

\end{array} \right.\)

Ví dụ 6. Chứng minh rằng các hàm số sau đây có đạo hàm không phụ thuộc \(x.\)

a. \(y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x.\)

b. \(y = {\cos ^2}\left( {\frac{\pi }{3} – x} \right) + {\cos ^2}\left( {\frac{\pi }{3} + x} \right)\) \( + {\cos ^2}\left( {\frac{{2\pi }}{3} – x} \right) + {\cos ^2}\left( {\frac{{2\pi }}{3} + x} \right)\) \( – 2{\sin ^2}x.\)

a. Ta có: \(y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\) \( = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3}\) \( + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\) \( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} = 1.\) Suy ra: \( y’ = 0.\)

b. Ta có: \(y = 2 + \frac{1}{2}{\rm{[}}\cos \left( {\frac{{2\pi }}{3} – 2x} \right) + \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\) \( + \cos \left( {\frac{{4\pi }}{3} – 2x} \right) + \cos \left( {\frac{{4\pi }}{3} + 2x} \right)]\) \( – 2{\sin ^2}x\) \( = \frac{3}{2} + \frac{1}{2}( – \cos 2x – \cos 2x) – 2{\sin ^2}x = 1.\) Suy ra: \(y’ = 0.\)

Ví dụ 7. Tìm \(a,b\) để hàm số \(f(x) = \left\{ \begin{array}{l}

{x^2} – x + 1{\rm{ }}\:khi\:x \le 1\\

– {x^2} + ax + b\:khi\:x /> 1

\end{array} \right.\) có đạo hàm trên \(R.\)

Với \(x \ne 1\) thì hàm số luôn có đạo hàm.

Do đó hàm số có đạo hàm trên \(R\) khi và chỉ khi hàm số có đạo hàm tại \(x = 1.\)

Ta có: \(\mathop {\lim }\limits_{x \to {1^ – }} f(x) = 1\), \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b – 1.\)

Hàm số liên tục trên \(R\) \( \Leftrightarrow a + b – 1 = 1\) \( \Leftrightarrow a + b = 2.\)

Khi đó:

\(\mathop {\lim }\limits_{x \to {1^ – }} \frac{{f(x) – f(1)}}{{x – 1}} = 1.\)

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) – f(1)}}{{x – 1}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ – {x^2} + ax + 1 – a}}{{x – 1}}\) \( = a – 2.\)

Nên hàm số có đạo hàm trên \(R\) thì: \(\left\{ \begin{array}{l}

a + b = 2\\

a – 2 = 1

\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}

a = 3\\

b = – 1

\end{array} \right.\)

Ví dụ 8. Tìm \(m\) để các hàm số:

a. \(y = (m – 1){x^3} – 3(m + 2){x^2}\) \( – 6(m + 2)x + 1\) có \(y’ \ge 0\), \(\forall x \in R.\)

b. \(y = \frac{{m{x^3}}}{3} – m{x^2} + (3m – 1)x + 1\) có \(y’ \le 0\), \(\forall x \in R.\)

a. Ta có: \(y’ = 3\left[ {(m – 1){x^2} – 2(m + 2)x – 2(m + 2)} \right].\)

Do đó: \(y’ \ge 0\) \( \Leftrightarrow (m – 1){x^2} – 2(m + 2)x – 2(m + 2) \ge 0\) \((1).\)

• Với \(m = 1\) thì \(\left( 1 \right) \Leftrightarrow – 6x – 6 \ge 0 \Leftrightarrow x \le – 1.\)

• Với \(m \ne 1\) thì \((1)\) đúng với mọi \(x \in R\) \( \Leftrightarrow \left\{ \begin{array}{l}

a = m – 1 /> 0\\

\Delta ‘ \le 0

\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}

m /> 1\\

(m + 1)(4 – m) \le 0

\end{array} \right.\) \( \Leftrightarrow m \ge 4.\)

Vậy \(m \ge 4.\)

b. Ta có: \(y’ = m{x^2} – 2mx + 3m – 1.\)

Nên \(y’ \le 0\) \( \Leftrightarrow m{x^2} – 2mx + 3m – 1 \le 0\) \((2).\)

• Với \(m = 0\) thì \((2)\) trở thành: \( – 1 \le 0\) (luôn đúng).

• Với \(m \ne 0\) khi đó \((2)\) đúng với mọi \(x \in R\) \( \Leftrightarrow \left\{ \begin{array}{l}

a = m < 0\\

\Delta’ \le 0

\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}

m < 0\\

m(1 – 2m) \le 0

\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}

m < 0\\

1 – 2m \ge 0

\end{array} \right.\) \( \Leftrightarrow m < 0.\)

Vậy \(m \le 0.\)

Hình Ảnh Chi Tiết

các quy tắc tính đạo hàm chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.

Nội Dung Đề Thi: các quy tắc tính đạo hàm sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.

Các Bài Toán Cơ Bản:

Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.

Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.

Các Câu Hỏi Mở:

Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.

Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:

Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.

Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.

Khả Năng Giải Quyết Vấn Đề:

Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.

Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.

Kết Luận:

các quy tắc tính đạo hàm chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%