Tài liệu gồm 119 trang, được biên soạn bởi tác giả Trương Ngọc Vỹ, tổng hợp các dạng bài tập chuyên đề hàm số y = ax2 (a ≠ 0) và phương trình bậc hai một ẩn môn Toán 9 bộ sách Chân Trời Sáng Tạo (CTST), có đáp án và lời giải chi tiết.
BÀI 1. HÀM SỐ y = ax2 (a ≠ 0).
+ Dạng 1. Tính giá trị hàm số tại một điểm cho trước.
+ Dạng 2. Vẽ đồ thị hàm số y = ax2 (a ≠ 0).
+ Dạng 3. Xác định hệ số của hàm số. Xác định điểm thuộc đồ thị hàm số.
+ Dạng 4. Ứng dụng thực tế của đồ thị hàm số y = ax2 (a ≠ 0).
BÀI 2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN.
CHỦ ĐỀ 1. GIẢI PHƯƠNG TRÌNH BẬC HAI MỘT ẨN.
+ Dạng 1. Giải phương trình bậc hai dạng đặc biệt (phương trình bậc hai bị khuyết hệ số b hoặc c).
+ Dạng 2. Giải phương trình bậc hai dùng công thức nghiệm.
+ Dạng 3. Xác định số nghiệm phương trình bậc hai chứa tham số.
CHỦ ĐỀ 2. SỰ TƯƠNG GIAO CỦA ĐỒ THỊ HÀM SỐ.
+ Dạng 1. Sự tương giao của đồ thị hàm số.
+ Dạng 2. Sự tương giao của đồ thị hàm số chứa tham số.
CHỦ ĐỀ 3. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI.
+ Dạng 1. Toán liên quan hình học.
+ Dạng 2. Toán liên quan chuyển động.
+ Dạng 3. Toán liên quan thực tế.
BÀI 3. ĐỊNH LÍ VIÈTE.
+ Dạng 1. Không giải phương trình, tính giá trị biểu thức đối xứng.
+ Dạng 2. Giải phương trình bằng cách nhẩm nghiệm.
+ Dạng 3. Tìm hai số khi biết tổng và tích.
+ Dạng 4. Xét dấu các nghiệm của phương trình bậc hai.
+ Dạng 5. Xác định điều kiện tham số để phương trình bậc hai thỏa mãn điều kiện cho trước.
+ Dạng 6. Xác định điều kiện tham số để phương trình bậc hai thỏa mãn điều kiện liên quan giá trị nhỏ nhất, lớn nhất.
+ Dạng 7. Sự tương giao của hai đồ thị chứa tham số liên quan Vi-et.
các dạng bài tập hàm số y = ax2 (a ≠ 0) và phương trình bậc hai một ẩn toán 9 ctst chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.
Nội Dung Đề Thi: các dạng bài tập hàm số y = ax2 (a ≠ 0) và phương trình bậc hai một ẩn toán 9 ctst sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.
Các Bài Toán Cơ Bản:
Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.
Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.
Các Câu Hỏi Mở:
Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.
Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:
Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.
Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.
Khả Năng Giải Quyết Vấn Đề:
Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.
Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.
Kết Luận:
các dạng bài tập hàm số y = ax2 (a ≠ 0) và phương trình bậc hai một ẩn toán 9 ctst chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.