1. Môn Toán
  2. bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10)
bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10)
Thể Loại: Toán 10
Ngày đăng: 18/06/2021

bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10)

Tài liệu gồm 567 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Đại số.

bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10)

Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 1: Đại số 10):

CHƯƠNG 1. MỆNH ĐỀ – TẬP HỢP.

BÀI 1. MỆNH ĐỀ.

Dạng 1. Nhận biết mệnh đề, mệnh đề chứa biến.

Dạng 2. Xét tính đúng sai của mệnh đề.

Dạng 3. Phủ định của mệnh đề.

Dạng 4. Mệnh đề kéo theo, mệnh đề đảo và hai mệnh đề tương đương.

Dạng 5. Mệnh đề với kí hiệu với mọi, tồn tại.

BÀI 2. TẬP HỢP.

Dạng 1. Tập hợp và các phần tử của tập hợp.

Dạng 2. Tập hợp con và hai tập hợp bằng nhau.

BÀI 3. CÁC PHÉP TOÁN TẬP HỢP.

Dạng 1. Giao và hợp của hai tập hợp.

Dạng 2. Hiệu và phần bù của hai tập hợp.

Dạng 3. Bài toán sử dụng biểu đồ Ven.

Dạng 4. Chứng minh X ⊂ Y. Chứng minh X = Y.

BÀI 4. CÁC TẬP HỢP SỐ.

Dạng 1. Tìm giao và hợp các khoảng, nửa khoảng, đoạn.

Dạng 2. Xác định hiệu và phần bù các khoảng, đoạn, nửa khoảng.

BÀI 5. SỐ GẦN ĐÚNG VÀ SAI SỐ.

Dạng 1. Biết số gần đúng a và độ chính xác d. Ước lượng sai số tương đối, các chữ số chắc, viết dưới dạng chuẩn.

Dạng 2. Biết số gần đúng a và sai số tương đối không vượt quá c. Ước lượng sai số tuyệt đối, các chữ số chắc, viết dưới dạng chuẩn.

Dạng 3. Quy tròn số. Ước lượng sai số tuyệt đối, sai số tương đối của số quy tròn.

Dạng 4. Sai số của tổng, tích và thương.

Dạng 5. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số.

CHƯƠNG 2. HÀM SỐ BẬC NHẤT VÀ BẬC HAI.

BÀI 1. ĐẠI CƯƠNG VỀ HÀM SỐ.

Dạng 1. Tính giá trị của hàm số tại một điểm.

Dạng 2. Tìm tập xác định của hàm số.

Dạng 3. Tính đồng biến, nghịch biến của hàm số.

Dạng 4. Dựa vào đồ thị tìm các khoảng đồng biến, nghịch biến.

Dạng 5. Xét tính chẵn lẻ của hàm số.

BÀI 2. HÀM SỐ BẬC NHẤT.

Dạng 1. Xét tính đồng biến, nghịch biến của hàm số.

Dạng 2. Đồ thị hàm số bậc nhất.

Dạng 3. Vị trí tương đối của hai đường thẳng.

Dạng 4. Xác định hàm số bậc nhất.

Dạng 5. Bài toán thực tế.

BÀI 3. HÀM SỐ BẬC HAI.

Dạng 1. Bảng biến thiên, tính đơn điệu, GTLN và GTNN của hàm số.

Dạng 2. Xác định hàm số bậc hai.

Dạng 3. Đồ thị hàm số bậc hai.

Dạng 4. Sự tương giao.

Dạng 5. Toán thực tế.

CHƯƠNG 3. PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH.

BÀI 1. ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH.

Dạng 1. Điều kiện xác định của phương trình.

Dạng 2. Sử dụng điều kiện xác định của phương trình để tìm gghiệm của phương trình.

Dạng 3. Phương trình tương đương, phương trình hệ quả.

BÀI 2. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI.

Dạng 1. Phương trình tích.

Dạng 2. Phương trình chứa ẩn trong giá trị tuyệt đối.

Dạng 3. Phương trình chứa ẩn ở mẫu.

Dạng 4. Phương trình chứa ẩn ở trong dấu căn.

Dạng 5. Định lý Vi-et và ứng dụng.

Dạng 6. Giải và biện luận phương trình.

BÀI 3. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN.

Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn.

Dạng 2. Giải và biện luận hệ phương trình bậc nhất ba ẩn.

Dạng 3. Giải và biện luận hệ phương trình bậc cao.

Dạng 4. Các bài toán thực tế phương trình, hệ phương trình.

CHƯƠNG 4. BẤT ĐẲNG THỨC – BẤT PHƯƠNG TRÌNH.

BÀI 1. BẤT ĐẲNG THỨC.

Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất.

Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất.

Dạng 3. Đặt ẩn phụ trong bất đẳng thức.

Dạng 4. Sử dụng bất đẳng thức phụ.

BÀI 2. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN.

Dạng 1. Điều kiện xác định của bất phương trình.

Dạng 2. Cặp bất phương trình tương đương.

Dạng 3. Bất phương trình bậc nhất một ẩn.

Dạng 4. Hệ bất phương trình bậc nhất một ẩn.

BÀI 3. DẤU CỦA NHỊ THỨC BẬC NHẤT.

Dạng 1. Xét dấu nhị thức bậc nhất.

Dạng 2. Bất phương trình tích.

Dạng 3. Bất phương trình chứa ẩn ở mẫu.

Dạng 4. Bất phương trình chứa trị tuyệt đối.

BÀI 4. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN.

Dạng 1. Bất phương trình bậc nhất hai ẩn.

Dạng 2. Hệ bất phương trình bậc nhất hai ẩn.

Dạng 3. Bài toán tối ưu.

BÀI 5. DẤU CỦA TAM THỨC BẬC HAI.

Dạng 1. Xét dấu của tam thức bậc hai áp dụng vào giải bất phương trình bậc hai đơn giản.

Dạng 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích.

Dạng 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu.

Dạng 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số.

Dạng 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt.

Dạng 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước.

Dạng 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng.

Dạng 8. Hệ bất phương trình bậc hai.

CHƯƠNG 5. THỐNG KÊ.

BÀI 1. BẢNG PHÂN BỐ TẦN SỐ – TẦN SUẤT.

BÀI 2. BIỂU ĐỒ.

BÀI 3. SỐ TRUNG BÌNH – SỐ TRUNG VỊ – MỐT.

BÀI 4. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN.

CHƯƠNG 6. CUNG VÀ GÓC LƯỢNG GIÁC, CÔNG THỨC LƯỢNG GIÁC.

BÀI 1. CUNG VÀ GÓC LƯỢNG GIÁC.

Dạng. Xác định các yếu tố liên quan đến cung và góc lượng giác.

BÀI 2. GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG.

Dạng 1. Biểu diễn góc và cung lượng giác.

Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác.

Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức.

Dạng 4. Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác.

BÀI 3. CÔNG THỨC LƯỢNG GIÁC.

Dạng 1. Tính giá trị lượng giác, biểu thức lượng giác.

Dạng 2. Xác định giá trị của một biểu thức lượng giác có điều kiện.

Dạng 3. Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến.

Dạng 4. Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác.

Dạng 5. Chứng minh đẳng thức, bất đẳng thức trong tam giác.

Hình Ảnh Chi Tiết

images-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-001.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-002.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-003.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-004.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-005.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-006.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-007.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-008.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-009.jpgimages-post/bai-giang-co-ban-va-nang-cao-toan-10-tap-1-dai-so-10-010.jpg

File bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10) PDF Chi Tiết

bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10) chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.

Nội Dung Đề Thi: bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10) sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.

Các Bài Toán Cơ Bản:

Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.

Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.

Các Câu Hỏi Mở:

Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.

Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:

Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.

Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.

Khả Năng Giải Quyết Vấn Đề:

Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.

Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.

Kết Luận:

bài giảng cơ bản và nâng cao toán 10 (tập 1: đại số 10) chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%