1. Môn Toán
  2. chứng minh công thức lượng giác bằng số phức
chứng minh công thức lượng giác bằng số phức
Thể Loại: TIPS Giải Toán 12
Ngày đăng: 26/03/2020

chứng minh công thức lượng giác bằng số phức

Có thể bạn chưa biết?

Ta đã làm quen với các công thức lượng giác từ chương trình Toán lớp 11, tuy nhiên có thể nhiều người trong chúng ta chưa biết cách chứng minh các công thức lượng giác đó như thế nào, vì thế trong chủ đề này, chúng ta sẽ đề cập tới một cách chứng minh các công thức lượng giác có sử dụng số phức, hay cụ thể hơn là công thức Euler.

chứng minh công thức lượng giác bằng số phức

Nhà toán học Leonhard Euler

Ta có công thức rất nổi tiếng do nhà toán học Euler phát biểu như sau: \({e^{i\varphi }} = \cos \varphi + i\sin \varphi \) (việc chứng minh công thức này sẽ được đề cập tới trong một bài viết khác).

Bây giờ áp dụng công thức này với các biểu thức lượng giác nhân đôi, nhân ba thì ta có:

\({e^{i.(2a)}} = \cos 2a + i\sin 2a.\)

\({e^{i(a + a)}} = {(\cos a + i\sin a)^2}\) \( = {\cos ^2}a – {\sin ^2}a + 2i\cos a\sin a.\)

Đến đây đồng nhất hệ số hai vế ta sẽ thu được công thức góc nhân đôi là:

\(\cos 2a = {\cos ^2}a – {\sin ^2}a.\)

\(\sin 2a = 2\sin a.\cos a.\)

Với công thức nhân ba thì cũng tương tự, ta có:

\({e^{i(3a)}} = \cos 3a + i\sin 3a.\)

\({e^{i(3a)}} = {\left( {{e^a}} \right)^3}\) \( = {(\cos a + i\sin a)^3}\) \( = {\cos ^3}a + 3i{\cos ^2}a – 3\cos a.{\sin ^2}a – i{\sin ^3}a.\)

Đến đây ta cũng đồng nhất hệ số như trên và sử dụng công thức lượng giác quen thuộc \({\sin ^2}x + {\cos ^2}x = 1\) thì ta cũng thu được hai công thức nhân ba như ta đã biết.

Tiếp theo ứng dụng công thức Euler, ta có biến đổi sau:

\({e^{i(a + b)}}\) \( = \cos (a + b) + i\sin (a + b)\)   \((1).\)

\({e^{ia}}.{e^{ib}}\) \( = [\cos a + i\sin a][\cos b + i\sin b].\)

\( = \cos a.\cos b – \sin a.\sin b\) \( + i(\sin a\cos b + \cos a\sin b)\)   \((2).\)

Đồng nhất hệ số ở hai đẳng thức \((1)\) và \((2)\) ta thu được hai công thức lượng giác quen thuộc:

\(\cos (a + b)\) \( = \cos a.\cos b – \sin a.\sin b.\)

\(\sin (a + b)\) \( = \sin a.\cos b + \cos a.\sin b.\)

Tương tự cho công thức hiệu, ta có:

\({e^{i(a – b)}}\) \( = \cos (a – b) + i\sin (a – b).\)

\(\frac{{{e^{ia}}}}{{{e^{ib}}}} = \frac{{\cos a + i\sin a}}{{\cos b + i\sin b}}.\)

\( = \frac{{(\cos a + i\sin a)(\cos b – i\sin b)}}{{{{\cos }^2}b + {{\sin }^2}b}}.\)

\( = \cos a\cos b + \sin a\sin b\) \( + i(\sin a\cos b – \cos a\sin b).\)

Vậy câu hỏi đặt ra là với công thức biến tổng thành tích thì ta sẽ làm như thế nào?

Trước tiên ta có:

\({e^{ia}} = \cos a + i\sin a\)   \((3).\)

\({e^{ib}} = \cos b + i\sin b\)   \((4).\)

Tiếp theo ta lại có:

\({e^{i\left( {\frac{{a + b}}{2}} \right)}}.{e^{i\left( {\frac{{a – b}}{2}} \right)}}\) \( = \left( {\cos \frac{{a + b}}{2} + i\sin \frac{{a + b}}{2}} \right)\left( {\cos \frac{{a – b}}{2} + i\sin \frac{{a – b}}{2}} \right).\)

\( = \cos \frac{{a + b}}{2}.\cos \frac{{a – b}}{2}\) \( – \sin \frac{{a + b}}{2}.\sin \frac{{a – b}}{2}\) \( + i\left( {\sin \frac{{a + b}}{2}.\cos \frac{{a – b}}{2} + \cos \frac{{a + b}}{2}.\sin \frac{{a – b}}{2}} \right).\)   \((5).\)

\({e^{i\left( {\frac{{a + b}}{2}} \right)}}.{e^{i\left( {\frac{{b – a}}{2}} \right)}}\) \( = \left( {\cos \frac{{a + b}}{2} + i\sin \frac{{a + b}}{2}} \right)\left( {\cos \frac{{b – a}}{2} + i\sin \frac{{b – a}}{2}} \right).\)

\( = \cos \frac{{a + b}}{2}.\cos \frac{{a – b}}{2}\) \( + \sin \frac{{a + b}}{2}.\sin \frac{{a – b}}{2}\) \( + i\left( {\sin \frac{{a + b}}{2}.\cos \frac{{a – b}}{2} – \cos \frac{{a + b}}{2}.\sin \frac{{a – b}}{2}} \right)\)   \((6).\)

Bây giờ lấy \((3)\) cộng (hoặc trừ) với \((4)\) và \((5)\) cộng (hoặc trừ) với \((6)\) ta có ngay các đẳng thức lượng giác quen thuộc. Từ công thức này ta suy ra công thức biến tích thành tổng.

Ngoài ra các công thức liên quan tới các hàm \(\tan x\) và \(\cot x\) ta cũng sử dụng các biến đổi đại số thuần túy và các công thức đã chứng minh ở trên để suy ra nó. Các bạn cũng có thể từ công thức Euler để suy ra các đẳng thức lượng giác khác phong phú hơn.

Cuối cùng mình xin kết thúc bài viết này tại đây, bài viết sau sẽ đề cập tới cách chứng minh công thức Euler, mong các bạn đón đọc!

Tác giả: Nguyễn Minh Tuấn (Tạp chí và Tư liệu Toán học)

Hình Ảnh Chi Tiết

chứng minh công thức lượng giác bằng số phức chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.

Nội Dung Đề Thi: chứng minh công thức lượng giác bằng số phức sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.

Các Bài Toán Cơ Bản:

Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.

Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.

Các Câu Hỏi Mở:

Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.

Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:

Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.

Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.

Khả Năng Giải Quyết Vấn Đề:

Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.

Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.

Kết Luận:

chứng minh công thức lượng giác bằng số phức chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%