Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm gồm 75 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề nguyên hàm cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây.
Khái quát nội dung tài liệu các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG:
PHẦN A. CÂU HỎI
Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 2).
+ Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 2).
+ Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 11).
Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 16).
+ Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 16).
+ Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 17).
Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 18).
+ Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 18).
+ Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 21).
Dạng 4. Nguyên hàm từng phần (Trang số 22).
+ Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 22).
+ Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 25).
Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 26).
Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 30).
[ads]
PHẦN B. ĐÁP ÁN THAM KHẢO
Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 33).
+ Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 33).
+ Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 38).
Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 44).
+ Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 44).
+ Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 45).
Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 47).
+ Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 47).
+ Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 51).
Dạng 4. Nguyên hàm từng phần (Trang số 53).
+ Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 53).
+ Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 57).
Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 60)
Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 69).
Tài liệu giúp quý thầy, cô giáo có nguồn bài tập chất lượng về nguyên hàm để tham khảo, các em học sinh học tốt chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán.
Hình Ảnh Chi Tiết
File các dạng toán nguyên hàm thường gặp trong kỳ thi thptqg PDF Chi Tiết
các dạng toán nguyên hàm thường gặp trong kỳ thi thptqg chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.
Nội Dung Đề Thi: các dạng toán nguyên hàm thường gặp trong kỳ thi thptqg sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.
Các Bài Toán Cơ Bản:
Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.
Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.
Các Câu Hỏi Mở:
Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.
Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:
Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.
Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.
Khả Năng Giải Quyết Vấn Đề:
Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.
Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.
Kết Luận:
các dạng toán nguyên hàm thường gặp trong kỳ thi thptqg chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.