1. Môn Toán
  2. bài giảng tiếp tuyến của đồ thị hàm số
bài giảng tiếp tuyến của đồ thị hàm số
Ngày đăng: 02/07/2021

bài giảng tiếp tuyến của đồ thị hàm số

Tài liệu gồm 59 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề tiếp tuyến của đồ thị hàm số, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số.

Mục tiêu:

Kiến thức:

+ Nắm được khái niệm đường tiếp tuyến của đồ thị hàm số, sự tiếp xúc của hai đồ thị.

+ Hiểu được ý nghĩa của đạo hàm liên quan đến hệ số góc của tiếp tuyến tại điểm.

+ Biết cách viết phương trình tiếp tuyến của đồ thị khi biết điểm tiếp xúc, biết trước hệ số góc và tiếp tuyến đi qua điểm cho trước.

Kĩ năng:

+ Viết được phương trình tiếp tuyến của đồ thị hàm số tại điểm cho trước.

+ Biết cách viết phương trình tiếp tuyến của đồ thị hàm số khi biết trước.

+ Biết cách viết phương trình tiếp tuyến của đồ thị hàm số đi qua điểm cho trước.

+ Giải được các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

I. LÍ THUYẾT TRỌNG TÂM

II. CÁC DẠNG BÀI TẬP

Dạng 1: Lập phương trình tiếp tuyến của đồ thị hàm số tại điểm cho trước.

– Bài toán 1. Sự tiếp xúc của hai đường cong.

– Bài toán 2. Lập phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(x0;y0).

Dạng 2: Lập phương trình tiếp tuyến của đồ thị hàm số y = f(x) khi biết hệ số góc.

– Bài toán 1. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc dựa vào các quan hệ song song, vuông góc.

– Bài toán 2: Viết phương trình tiếp tuyến của đồ thị hàm số y = (ax + b)/(cx + d) khi biết mối quan hệ của tiếp tuyến với các đường tiệm cận của đồ thị hàm số.

Dạng 3: Lập phương trình tiếp tuyến của đồ thị hàm số y = f(x) đi qua điểm M cho trước.

– Bài toán 1. Lập phương trình tiếp tuyến của đồ thị hàm số y = f(x) đi qua điểm M(x0;y0) cho trước.

– Bài toán 2. Xác định các điểm M để có k tiếp tuyến của đồ thị hàm số (C): y = f(x) đi qua điểm M.

Dạng 4: Lập phương trình tiếp tuyến của đồ thị hàm số ẩn tại điểm có hoành độ x = x0 cho trước.

Dạng 5: Một số bài toán tiếp tuyến khác.

– Bài toán 1. Tìm các điểm trên đồ thị hàm số y = f(x) mà tiếp tuyến tại các điểm đó song song với nhau hoặc có cùng hệ số góc k.

– Bài toán 2. Một số dạng toán khác.

Hình Ảnh Chi Tiết

images-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-01.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-02.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-03.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-04.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-05.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-06.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-07.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-08.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-09.jpgimages-post/bai-giang-tiep-tuyen-cua-do-thi-ham-so-10.jpg

File bài giảng tiếp tuyến của đồ thị hàm số PDF Chi Tiết

bài giảng tiếp tuyến của đồ thị hàm số chất lượng là một công cụ quan trọng trong hệ thống giáo dục hiện đại, được thiết kế với mục tiêu không chỉ nhằm đánh giá kiến thức lý thuyết mà còn để kiểm tra các kỹ năng thực hành và khả năng tư duy phản biện của học sinh ở từng cấp học cụ thể. Trong bối cảnh giáo dục ngày càng phát triển, việc đánh giá một cách toàn diện và khách quan là điều cần thiết để giúp học sinh nắm vững kiến thức, đồng thời phát triển kỹ năng giải quyết vấn đề, một yếu tố then chốt trong quá trình học tập và trong cuộc sống sau này.

Nội Dung Đề Thi: bài giảng tiếp tuyến của đồ thị hàm số sẽ bao gồm một loạt các bài toán được phân chia thành nhiều phần khác nhau, từ cơ bản đến nâng cao, nhằm phản ánh đầy đủ các lĩnh vực trong chương trình học toán. Các phần này không chỉ giúp kiểm tra kiến thức mà còn khuyến khích học sinh phát huy sự sáng tạo và khả năng tư duy phản biện.

Các Bài Toán Cơ Bản:

Phần này tập trung vào việc kiểm tra kiến thức cơ bản mà học sinh đã học, như các phép toán số học, định nghĩa hình học, và các khái niệm đại số.

Ví dụ: Học sinh sẽ được yêu cầu giải các bài toán tính toán đơn giản, xác định diện tích và chu vi của các hình cơ bản, hay tìm hiểu các tính chất của các đối tượng hình học.

Các Câu Hỏi Mở:

Đây là phần quan trọng nhằm khuyến khích học sinh phát triển khả năng tư duy độc lập. Các câu hỏi mở yêu cầu học sinh không chỉ dừng lại ở việc áp dụng công thức mà còn phải biết phân tích và tổng hợp thông tin để đưa ra các giải pháp đa dạng.

Ví dụ: Một câu hỏi có thể yêu cầu học sinh mô tả cách họ sẽ giải quyết một vấn đề thực tế sử dụng toán học, hoặc đề xuất cách thức tối ưu hóa một quy trình dựa trên các khái niệm toán học mà họ đã học. Tính Tư Duy Sáng Tạo:

Đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn phải khuyến khích khả năng tư duy sáng tạo của học sinh. Các bài toán được thiết kế để học sinh có thể vận dụng linh hoạt kiến thức đã học vào các tình huống mới, qua đó phát triển khả năng tư duy độc lập và sáng tạo.

Ví dụ: Học sinh có thể được yêu cầu thiết kế một bài toán mới dựa trên một khái niệm đã học, từ đó trình bày lý do vì sao bài toán này có thể thú vị và hữu ích.

Khả Năng Giải Quyết Vấn Đề:

Một trong những mục tiêu chính của đề thi là đánh giá khả năng giải quyết vấn đề của học sinh. Học sinh sẽ được yêu cầu không chỉ tìm ra đáp án đúng mà còn phải trình bày rõ ràng quy trình và logic đã sử dụng để đến được kết quả đó.

Ví dụ: Bài toán có thể yêu cầu học sinh đưa ra các bước giải quyết một bài toán thực tiễn, từ việc phân tích vấn đề đến việc tìm ra giải pháp khả thi.

Kết Luận:

bài giảng tiếp tuyến của đồ thị hàm số chất lượng là một công cụ quan trọng giúp giáo viên và học sinh đánh giá và cải thiện năng lực toán học. Qua các bài toán đa dạng từ cơ bản đến nâng cao, từ lý thuyết đến thực tiễn, đề thi không chỉ đơn thuần kiểm tra kiến thức mà còn thúc đẩy sự phát triển toàn diện về tư duy và khả năng giải quyết vấn đề. Điều này không chỉ chuẩn bị cho học sinh một nền tảng vững chắc trong môn toán học mà còn trang bị cho các em kỹ năng cần thiết để đối mặt với những thách thức trong học tập và trong cuộc sống thực tiễn sau này.

đánh giá tài liệu

5/5
( đánh giá)
5 sao
100%
4 sao
0%
3 sao
0%
2 sao
0%
1 sao
0%